Marine food chains at risk of collapse, extensive study of world's oceans finds

Important ecosystems could be massively damaged by 2050 unless greenhouse gas emissions and localised pollution is drastically reduced, researchers say
Oliver Milman The Guardian 13 Oct 15;

The food chains of the world’s oceans are at risk of collapse due to the release of greenhouse gases, overfishing and localised pollution, a stark new analysis shows.

A study of 632 published experiments of the world’s oceans, from tropical to arctic waters, spanning coral reefs and the open seas, found that climate change is whittling away the diversity and abundance of marine species.

The paper, published in the Proceedings of the National Academy of Sciences, found there was “limited scope” for animals to deal with warming waters and acidification, with very few species escaping the negative impact of increasing carbon dioxide dissolution in the oceans.

The world’s oceans absorb about a third of all the carbon dioxide emitted by the burning of fossil fuels. The ocean has warmed by about 1C since pre-industrial times, and the water increased to be 30% more acidic.

The acidification of the ocean, where the pH of water drops as it absorbs carbon dioxide, will make it hard for creatures such as coral, oysters and mussels to form the shells and structures that sustain them. Meanwhile, warming waters are changing the behaviour and habitat range of fish.

The overarching analysis of these changes, led by the University of Adelaide, found that the amount of plankton will increase with warming water but this abundance of food will not translate to improved results higher up the food chain.

“There is more food for small herbivores, such as fish, sea snails and shrimps, but because the warming has driven up metabolism rates the growth rate of these animals is decreasing,” said associate professor Ivan Nagelkerken of Adelaide University. “As there is less prey available, that means fewer opportunities for carnivores. There’s a cascading effect up the food chain.

“Overall, we found there’s a decrease in species diversity and abundance irrespective of what ecosystem we are looking at. These are broad scale impacts, made worse when you combine the effect of warming with acidification.

“We are seeing an increase in hypoxia, which decreases the oxygen content in water, and also added stressors such as overfishing and direct pollution. These added pressures are taking away the opportunity for species to adapt to climate change.”

The research adds to recent warnings over the state of the oceans, with the world experiencing the third global bleaching of coral reefs.

Since 2014, a massive underwater heatwave, driven by climate change, has caused corals to lose their brilliance and die in every ocean. By the end of this year 38% of the world’s reefs will have been affected. About 5% will have died.

Coral reefs make up just 0.1% of the ocean’s floor but nurture 25% of the world’s marine species. There are concerns that ecosystems such as Australia’s Great Barrier Reef, which has lost half its coral cover over the past 30 years, could be massively diminished by 2050 unless greenhouse gas emissions are slashed and localised pollution is curbed.

Meanwhile, warming of the oceans is causing water to thermally expand, fuelling sea level rises caused by melting land ice. Research released in the US on Monday found that Antarctic ice is melting so fast that the whole continent could be at risk by 2100, with severe consequences for coastal communities.

Problems in the ocean’s food chains will be a direct concern for hundreds of millions of people who rely upon seafood for sustenance, medicines and income. The loss of coral reefs could also worsen coastal erosion due to their role in protecting shorelines from storms and cyclones.

“These effects are happening now and will only be exacerbated in the next 50 to 100 years,” Nagelkerken said. “We are already seeing strange things such as the invasion of tropical species into temperate waters off south-eastern Australia. But if we reduce additional stressors such as overfishing and pollution, we can give species a better chance to adapt to climate change.”


Global marine analysis suggests food chain collapse
University of Adelaide ScienceAlert 12 Oct 15;

A world-first global analysis of marine responses to climbing human carbon dioxide emissions has painted a grim picture of future fisheries and ocean ecosystems.

Published today in the journal Proceedings of the National Academy of Sciences (PNAS), marine ecologists from the University of Adelaide say the expected ocean acidification and warming is likely to produce a reduction in diversity and numbers of various key species that underpin marine ecosystems around the world.

"This 'simplification' of our oceans will have profound consequences for our current way of life, particularly for coastal populations and those that rely on oceans for food and trade," says Associate Professor Ivan Nagelkerken, Australian Research Council (ARC) Future Fellow with the University's Environment Institute.

Associate Professor Nagelkerken and fellow University of Adelaide marine ecologist Professor Sean Connell have conducted a 'meta-analysis' of the data from 632 published experiments covering tropical to artic waters, and a range of ecosystems from coral reefs, through kelp forests to open oceans.

"We know relatively little about how climate change will affect the marine environment," says Professor Connell. "Until now, there has been almost total reliance on qualitative reviews and perspectives of potential global change. Where quantitative assessments exist, they typically focus on single stressors, single ecosystems or single species.

"This analysis combines the results of all these experiments to study the combined effects of multiple stressors on whole communities, including species interactions and different measures of responses to climate change."

The researchers found that there would be "limited scope" for acclimation to warmer waters and acidification. Very few species will escape the negative effects of increasing CO2, with an expected large reduction in species diversity and abundance across the globe. One exception will be microorganisms, which are expected to increase in number and diversity.

From a total food web point of view, primary production from the smallest plankton is expected to increase in the warmer waters but this often doesn't translate into secondary production (the zooplankton and smaller fish) which shows decreased productivity under ocean acidification.

"With higher metabolic rates in the warmer water, and therefore a greater demand for food, there is a mismatch with less food available for carnivores ─ the bigger fish that fisheries industries are based around," says Associate Professor Nagelkerken. "There will be a species collapse from the top of the food chain down."

The analysis also showed that with warmer waters or increased acidification or both, there would be deleterious impacts on habitat-forming species for example coral, oysters and mussels. Any slight change in the health of habitats would have a broad impact on a wide range of species these reefs harbour.

Another finding was that acidification would lead to a decline in dimethylsulfide gas (DMS) production by ocean plankton which helps cloud formation and therefore in controlling Earth's heat exchange.

Journal Reference:

Ivan Nagelkerken and Sean D. Connell. Global alteration of ocean ecosystem functioning due to increasing human CO2 emissions. PNAS, October 12, 2015 DOI: 10.1073/pnas.1510856112